Por meio de modelagem computacional de cromossomos, pesquisadores investigaram a arquitetura genômica do mosquito Aedes aegypti e descobriram uma organização diferente da encontrada na maioria dos seres vivos. Trabalho foi publicado na Nature Communications (imagem: acervo dos pesquisadores)

Estudo sobre o DNA do mosquito da dengue ajuda a entender como a expressão dos genes é regulada
24 de maio de 2023

Por meio de modelagem computacional de cromossomos, pesquisadores investigaram a arquitetura genômica do mosquito Aedes aegypti e descobriram uma organização diferente da encontrada na maioria dos seres vivos. Trabalho foi publicado na Nature Communications

Estudo sobre o DNA do mosquito da dengue ajuda a entender como a expressão dos genes é regulada

Por meio de modelagem computacional de cromossomos, pesquisadores investigaram a arquitetura genômica do mosquito Aedes aegypti e descobriram uma organização diferente da encontrada na maioria dos seres vivos. Trabalho foi publicado na Nature Communications

24 de maio de 2023

Por meio de modelagem computacional de cromossomos, pesquisadores investigaram a arquitetura genômica do mosquito Aedes aegypti e descobriram uma organização diferente da encontrada na maioria dos seres vivos. Trabalho foi publicado na Nature Communications (imagem: acervo dos pesquisadores)

 

Julia Moióli | Agência FAPESP – Os cromossomos do mosquito Aedes aegypti, vetor de doenças como chikungunya, dengue, febre amarela e zika, se organizam como “cristais líquidos”, ou seja, têm ao mesmo tempo características de cristal e aspecto fluido. Essa organização da cromatina (complexo de DNA e proteínas presente no núcleo celular) ainda não foi observada em outro ser vivo.

A descoberta, divulgada na revista Nature Communications, pode dar pistas sobre como a expressão gênica é regulada. O estudo foi desenvolvido por grupos do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) e do Centro de Física Biológica Teórica da Universidade Rice (Estados Unidos).

Há cerca de uma década, pesquisadores da universidade norte-americana se dedicam ao estudo do DNA por meio de suas formas tridimensionais. O objetivo é entender como essas moléculas podem estar envolvidas nas funções do genoma, particularmente na expressão dos genes. Foi assim que, em 2021, descobriu-se que os cromossomos apresentam dois padrões estruturais no estágio do ciclo de vida celular chamado de interfase, ou seja, quando suas células não estão se dividindo: nas leveduras e em grande parte das plantas, a forma é de grampo de cabelo, com os centrômeros (região mais condensada e, normalmente, localizada no centro dos cromossomos) juntos, dobrados e polarizados com os telômeros (regiões formadas por proteínas e DNA localizadas nas extremidades cromossômicas); enquanto nos humanos e em animais como as galinhas os cromossomos se separam, formando territórios aproximadamente esféricos.

A formação da arquitetura genômica, tanto no primeiro tipo (grampo de cabelo) quanto no segundo tipo (territórios quase esféricos), está relacionada com a competição entre dois mecanismos. O primeiro diz respeito a interações de separação de fase entre tipos de cromatina (processo análogo à separação entre óleo e água). O segundo é associado às interações que levam à compactação da cadeia cromossomal (condensação).

De acordo com o estudo atual, apoiado pela FAPESP (projetos 16/13998-8 e 17/09662-7), o genoma do mosquito da dengue, que tem aproximadamente metade do tamanho do genoma humano, possui características das duas categorias. Os centrômeros se condensam em um dos polos do núcleo, e os telômeros, no outro, mas, ao mesmo tempo, os cromossomos continuam separados. Para acomodar esses dois processos, os cromossomos agora não são mais esféricos, mas distorcidos e bem mais alongados.

“É um caso atípico que, na verdade, combina as duas estratégias”, afirma Vinícius de Godoi Contessoto, pesquisador no Centro de Física Biológica Teórica da Universidade Rice e primeiro autor do estudo. “Essa informação pode ajudar a entender melhor funções da dinâmica e organização da cromatina na regulação gênica.”

“Como confirmamos em um estudo de 2020, a expressão dos genes não é controlada simplesmente por processos químicos, como a ligação de fatores de transcrição; a estrutura tridimensional do genoma e sua dinâmica também fazem parte desse processo regulatório”, explica José N. Onuchic, diretor do Centro de Física Biológica Teórica da Universidade Rice e coautor do estudo.

“O mosquito é apenas um pequeno pedaço explorado de uma ‘imagem’ mais complexa”, complementa Contessoto. “A ideia agora é que, com as ferramentas que desenvolvemos e esse entendimento mais amplo da distinção entre humanos e outros organismos, possamos expandir o estudo para inúmeros outros sistemas.”

Interações da cromatina

Conhecer a estrutura dos cromossomos do Aedes aegypti só foi possível graças a uma técnica de análise genômica conhecida como Hi-C, que detecta as interações da cromatina e forma um mapa de contatos que mostra quais partes do DNA estão próximas espacialmente. Esse método identifica a frequência desses contatos por crosslinks (ligações cruzadas entre as cadeias de DNA).

“Basicamente, ‘quebra-se’ o cromossomo inteiro e observa-se quais partes estão ligadas via crosslink para realizar um sequenciamento em quantidade e chegar a esse mapa que mostra quais partes do cromossomo se aproximam no espaço”, explica Onuchic. “Esses experimentos não determinam a estrutura tridimensional do cromossomo, mas geram um mapa em duas dimensões dos contatos.”

Com esse mapa, a equipe envolvida no trabalho pôde, então, calcular o conjunto correspondente de estruturas cromossômicas em 3D – usando um modelo denominado Mínimo de Cromatina (MiChroM), já empregado com o mesmo objetivo em outros organismos – e realizar a simulação física que chegou ao formato do cromossomo do mosquito. Métodos teóricos desenvolvidos na Universidade Rice são utilizados para determinar o conjunto de estruturas em três dimensões consistentes com esse mapa.

O artigo Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues pode ser lido em: www.nature.com/articles/s41467-023-35909-2.
 

  Republicar
 

Republicar

A Agência FAPESP licencia notícias via Creative Commons (CC-BY-NC-ND) para que possam ser republicadas gratuitamente e de forma simples por outros veículos digitais ou impressos. A Agência FAPESP deve ser creditada como a fonte do conteúdo que está sendo republicado e o nome do repórter (quando houver) deve ser atribuído. O uso do botão HMTL abaixo permite o atendimento a essas normas, detalhadas na Política de Republicação Digital FAPESP.