As medições são baseadas na capacidade do Alice de rastrear e identificar partículas produzidas em colisões de alta energia entre íons pesados no LHC (foto: Cern)

Brasileiros integram experimento que confirma simetria fundamental na natureza
21 de agosto de 2015

Resultados do experimento realizado no Grande Colisor de Hádrons foram publicados na Nature Physics

Brasileiros integram experimento que confirma simetria fundamental na natureza

Resultados do experimento realizado no Grande Colisor de Hádrons foram publicados na Nature Physics

21 de agosto de 2015

As medições são baseadas na capacidade do Alice de rastrear e identificar partículas produzidas em colisões de alta energia entre íons pesados no LHC (foto: Cern)

 

Diego Freire | Agência FAPESP – O A Large Ion Collider Experiment (Alice), um dos experimentos do Grande Colisor de Hádrons (LHC, na sigla em inglês) e que conta com a participação de pesquisadores da Universidade de São Paulo (USP) e da Universidade Estadual de Campinas (Unicamp), realizou medições precisas de massa e carga elétrica de partículas que confirmaram a existência de uma simetria fundamental da natureza.

Os resultados, publicados no dia 17 de agosto, na Nature Physics, levaram os pesquisadores a verificar uma simetria fundamental CPT – de carga, paridade e tempo – entre os núcleos das partículas e de suas antipartículas.

As medições são baseadas na capacidade do Alice de rastrear e identificar partículas produzidas em colisões de alta energia entre íons pesados no LHC, da Organização Europeia para a Pesquisa Nuclear (Cern), investigando a possibilidade da existência de diferenças sutis entre a maneira como prótons e nêutrons se unem em núcleos e a forma como as suas antipartículas correspondentes formam antinúcleos.

“Após o Big Bang, para cada partícula de matéria foi criada uma antipartícula. Na física de partículas, uma questão de extrema importância é saber se todas as leis da física exibem um tipo específico de simetria, a CPT, e as medições sugerem que há, sim, uma simetria fundamental entre os núcleos e antinúcleos”, disse Marcelo Gameiro Munhoz, professor do Instituto de Física (IF) da USP e integrante da equipe brasileira no Alice.

Munhoz coordena a pesquisa Física nuclear de altas energias no RHIC e LHC, realizada com o apoio da FAPESP, colaborando com atividades experimentais relacionadas ao estudo de colisões entre íons pesados relativísticos no Alice e no Relativistic Heavy Ion Collider (RHIC), do Brookhaven National Laboratory, nos Estados Unidos.

Entre os trabalhos do grupo brasileiro envolvido com o Alice está a produção de quarks pesados, chamados de charm e bottom, a partir da medida de elétrons com um calorímetro eletromagnético e, mais recentemente, o desenvolvimento do microchip Sampa, que será utilizado no LHC em estudos de fenômenos mais raros a partir de partículas produzidas em colisões de íons pesados (leia mais em agencia.fapesp.br/21373).

O experimento

De acordo com Munhoz, as medições de massa e carga elétrica realizadas no experimento sobre simetria, combinadas com outros estudos, ajudarão os físicos a determinar quais das muitas teorias sobre as leis fundamentais do Universo são mais prováveis.

“Essas leis descrevem a natureza de todas as interações entre a matéria, por isso é importante saber que as interações físicas não se alteram ao se inverter a carga das partículas, mudar sua paridade, invertendo suas coordenadas no espaço, e reverter o tempo. As leis da física permaneceriam as mesmas nessas condições.”

Foram medidas especificamente as diferenças entre razões de massa e carga de dêuterons, formados por um próton e um nêutron, e antidêuterons e núcleos de hélio-3, formados por dois prótons e um nêutron, e anti-hélio-3. Medições recentes no Cern compararam as mesmas propriedades entre prótons e antiprótons com alta precisão.

O Alice registra colisões de alta energia entre íons de chumbo no LHC, o que permite o estudo da matéria em condições extremas de densidade e temperatura.

As colisões entre íons de chumbo fornecem uma fonte abundante de partículas e antipartículas, e os núcleos e antinúcleos correspondentes são produzidos a taxas aproximadamente iguais, possibilitando que se façam comparações detalhadas das propriedades daqueles produzidos em maior abundância.

O experimento realiza medições precisas da curvatura das trajetórias dessas partículas no campo magnético do detector e também do seu tempo de voo, utilizando as informações para determinar as relações entre massa e carga em núcleos e antinúcleos.

A alta precisão do detector de tempo de voo, que determina o tempo de chegada de partículas e antipartículas com uma resolução de 80 picossegundos, associada à medição de perda de energia fornecida na câmara de projeção de tempo, permite medir um sinal claro para dêuterons, antidêuterons, hélio-3 e anti-hélio-3 – as partículas estudadas no experimento sobre similaridade.

Os resultados do experimento foram publicados no artigo Precision measurement of the mass difference between light nuclei and anti-nuclei (DOI: 10.1038/nphys3432), que pode ser lido na Nature Physics em www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3432.html.

 

  Republicar
 

Republicar

A Agência FAPESP licencia notícias via Creative Commons (CC-BY-NC-ND) para que possam ser republicadas gratuitamente e de forma simples por outros veículos digitais ou impressos. A Agência FAPESP deve ser creditada como a fonte do conteúdo que está sendo republicado e o nome do repórter (quando houver) deve ser atribuído. O uso do botão HMTL abaixo permite o atendimento a essas normas, detalhadas na Política de Republicação Digital FAPESP.