Aumento dos níveis de cálcio em mitocôndrias de hepatócitos: à esquerda na condição controle, no centro logo após adição de tapsigargina (TG), droga que aumenta o cálcio, e à direita no tempo final (crédito: Eloisa Vilas-Boas/IQ-USP)

Ativação da respiração celular depende de concentração ideal de cálcio, mostra estudo
23 de fevereiro de 2023

Experimentos com células hepáticas de camundongos foram feitos por grupo do Centro de Pesquisa em Processos Redox em Biomedicina da USP. Objetivo foi entender como é regulado o metabolismo de uma célula sadia

Ativação da respiração celular depende de concentração ideal de cálcio, mostra estudo

Experimentos com células hepáticas de camundongos foram feitos por grupo do Centro de Pesquisa em Processos Redox em Biomedicina da USP. Objetivo foi entender como é regulado o metabolismo de uma célula sadia

23 de fevereiro de 2023

Aumento dos níveis de cálcio em mitocôndrias de hepatócitos: à esquerda na condição controle, no centro logo após adição de tapsigargina (TG), droga que aumenta o cálcio, e à direita no tempo final (crédito: Eloisa Vilas-Boas/IQ-USP)

 

Agência FAPESP* – O cálcio é o mineral mais abundante no corpo humano e tem diversas funções biológicas, participando de processos bioquímicos importantes. Ele é um regulador-chave em várias vias de sinalização intracelular e tem sido implicado no controle metabólico e na função mitocondrial. Sob a forma de íons de cálcio (Ca2+), ele ativa a respiração mitocondrial ao induzir a atividade de enzimas associadas ao metabolismo oxidativo, regulando assim a geração de adenosina trifosfato (ATP). O ATP é a principal fonte de energia de nossas células. A questão é que, embora conhecida, essa atividade do cálcio na respiração celular não havia sido determinada quantitativamente, ou seja, ninguém ainda havia medido.

Esse foi o desafio da pesquisadora Eloisa Aparecida Vilas Boas em seu projeto de pós-doutorado desenvolvido com bolsa da FAPESP e supervisão da professora Alicia Kowaltowski, do Instituto de Química da Universidade de São Paulo (USP). A investigação foi conduzida no âmbito do Centro de Pesquisa em Processos Redox em Biomedicina (Redoxoma), um Centro de Pesquisa, Inovação e Difusão (CEPID) da FAPESP.

“Fala-se muito que o cálcio ativa algumas enzimas mitocondriais do ciclo de Krebs [uma etapa da respiração celular que ocorre na mitocôndria], com impacto na produção de ATP. Mas será mesmo? Ninguém mediu. Então o que fizemos foi estudar a respiração em mitocôndrias isoladas do fígado de camundongos e em hepatócitos em cultura, modulando diferentes níveis de cálcio. E mostramos que existe uma faixa ideal de concentração de cálcio em que a respiração mitocondrial é ativada”, afirma Vilas Boas. Os resultados foram publicados no Journal of Biological Chemistry (JBC).

Kowaltowski destaca que o trabalho inovou ao investigar como determinadas concentrações de cálcio alteram o fluxo metabólico. “Se você olha para a quantidade de uma coisa, tem uma fotografia do momento, não sabe quanto está sendo consumido e quanto está sendo produzido. Neste trabalho, a Eloisa está olhando para o fluxo, quanto está sendo transformado dessas moléculas. Isso realmente mostra como está a atividade metabólica.”

Além disso, a pesquisa avaliou a respiração celular em níveis fisiológicos de cálcio, para entender como é regulado o metabolismo de uma célula normal. “Muitas vezes a gente procura por doenças, mas tem lacunas no conhecimento do que acontece numa célula absolutamente normal”, afirmou Kowaltowski.

Cachinhos Dourados

O cálcio afeta quase todos os aspectos da vida celular e suas concentrações intracelulares são rigorosamente controladas. Nas células, a maior parte do cálcio está sequestrada no retículo endoplasmático e nas mitocôndrias – estas são consideradas reguladores centrais da homeostase do cálcio, pois podem captar, absorver e liberar íons do mineral.

Segundo as pesquisadoras, sabe-se que, nas mitocôndrias, a concentração excessiva de cálcio leva a um processo chamado transição da permeabilidade mitocondrial, no qual a membrana mitocondrial perde a seletividade, comprometendo a síntese de ATP e levando a célula à morte. Níveis moderados de cálcio, por outro lado, podem ativar direta ou indiretamente as enzimas da matriz mitocondrial, possivelmente impactando a produção de ATP.

Para entender de maneira mais global os efeitos do cálcio na respiração mitocondrial, elas monitoraram o efeito de diferentes concentrações de cálcio na taxa de consumo de oxigênio, fazendo um paralelo entre mitocôndrias isoladas de células do fígado de camundongos (hepatócitos) em cultura. O fígado é um dos tecidos mais importantes para o metabolismo.

Vilas Boas explica que, para estudar as mitocôndrias isoladas, foram usados vários substratos e diferentes concentrações de cálcio. A análise foi feita com um equipamento chamado Oroboros, um respirômetro de alta resolução que permite medir o consumo de oxigênio nas mitocôndrias de acordo com o tempo. Nas células intactas, foram usados moduladores – tanto um quelante para tirar o cálcio intracelular, levando à diminuição da respiração, quanto estratégias para aumentar a concentração de cálcio. As células intactas foram estudadas com o uso do analisador Seahorse, que permite medir a taxa de consumo de oxigênio de células vivas em condições de cultura.

Os resultados indicam que as concentrações de cálcio impactam fortemente a respiração mitocondrial, com um efeito do tipo “Cachinhos Dourados”, ou seja, se houver falta ou excesso de cálcio a fosforilação oxidativa é limitada. Já a concentração “na medida certa” promove ativação significativa.

Em todas as situações, os níveis de cálcio foram quantificados. “Além da medida do cálcio citosólico [presente no citosol, conteúdo celular que preenche o citoplasma entre as organelas, o núcleo e a membrana plasmática], fiz um experimento que mostrou o cálcio dentro da mitocôndria. Com isso demonstrei que realmente ele precisa entrar na mitocôndria para provocar o efeito”, afirmou a pesquisadora.

Segundo Kowaltowski, o interessante foi observar que a célula mantém os níveis de cálcio mitocondrial em uma faixa ideal para a respiração. “A célula normalmente não se mantém no máximo de produção de ATP. Ela pode aumentar essa produção de acordo com a demanda e mantém os níveis de cálcio necessários para isso.”

O artigo Goldilocks calcium concentrations and the regulation of oxidative phosphorylation: Too much, too little, or just right pode ser acessado em: www.jbc.org/article/S0021-9258(23)00036-4/fulltext.

* Com informações do Redoxoma, um Centro de Pesquisa, Inovação e Difusão da FAPESP.
 

  Republicar
 

Republicar

A Agência FAPESP licencia notícias via Creative Commons (CC-BY-NC-ND) para que possam ser republicadas gratuitamente e de forma simples por outros veículos digitais ou impressos. A Agência FAPESP deve ser creditada como a fonte do conteúdo que está sendo republicado e o nome do repórter (quando houver) deve ser atribuído. O uso do botão HMTL abaixo permite o atendimento a essas normas, detalhadas na Política de Republicação Digital FAPESP.