Simulações computacionais atomísticas fundamentadas na Teoria do Funcional da Densidade propiciaram a identificação de um mecanismo até então inédito na formação de espécies reativas de oxigênio (imagem: divulgação)

Materiais Funcionais
Estudo pode levar ao desenvolvimento de materiais biocidas de baixo custo
29 de fevereiro de 2024

Experimento com semicondutor fosfato de prata revelou mecanismo inédito de formação de espécies reativas de oxigênio – moléculas tóxicas que podem causar a morte de patógenos

Materiais Funcionais
Estudo pode levar ao desenvolvimento de materiais biocidas de baixo custo

Experimento com semicondutor fosfato de prata revelou mecanismo inédito de formação de espécies reativas de oxigênio – moléculas tóxicas que podem causar a morte de patógenos

29 de fevereiro de 2024

Simulações computacionais atomísticas fundamentadas na Teoria do Funcional da Densidade propiciaram a identificação de um mecanismo até então inédito na formação de espécies reativas de oxigênio (imagem: divulgação)

 

Agência FAPESP* – Um estudo teórico-experimental com a participação de pesquisadores do Centro de Desenvolvimento de Materiais Funcionais (CDMF) chegou a conclusões inéditas sobre a atividade biocida do semicondutor fosfato de prata. Descrito em “artigo” publicado no The Journal of Physical Chemistry C, o trabalho demonstrou que essa atividade está associada à formação de espécies reativas de oxigênio (ROS, na sigla em inglês). Essas moléculas altamente instáveis são capazes de gerar estresse oxidativo e causar a morte de patógenos.

O CDMF é um Centro de Pesquisa, Inovação e Difusão (CEPID) da FAPESP sediado na Universidade Federal de São Carlos (UFSCar).

No estudo, simulações computacionais atomísticas fundamentadas na Teoria do Funcional da Densidade (DFT) propiciaram a identificação de um mecanismo até então inédito na formação de ROS. Esse mecanismo envolve a ativação cooperativa de uma molécula de água e uma molécula de oxigênio na superfície do fosfato de prata.

A DFT é uma das principais teorias da mecânica quântica. Tem sido usada para descrever propriedades eletrônicas na física do estado sólido, química quântica, ciência dos materiais, bioquímica, biologia, nanossistemas e sistemas em escala atômica.

Os pesquisadores constataram que a superfície do semicondutor atua como um catalisador, facilitando a transferência de elétrons da molécula de água para a superfície e, a partir daí, para a molécula de oxigênio. O processo resulta na formação das espécies precursoras dos ROS: hidroxila e superóxido.

Miguel San-Miguel, pesquisador associado ao CDMF e um dos autores do artigo, explicou que os resultados abrem perspectivas inovadoras para o entendimento da formação de ROS em materiais baseados em semicondutores de prata. Explicou também que eles possibilitam a exploração em outros materiais do mecanismo identificado, favorecendo a pesquisa de aplicações biocidas de baixo custo. “Esse avanço não apenas aprimora o conhecimento teórico sobre o assunto, mas também oferece potenciais implicações práticas para a utilização efetiva desses materiais em contextos biológicos”, afirma.

O estudo contou com a participação de pesquisadores da UFSCar, Universidade Estadual de Campinas (Unicamp), Universitat Jaume I e Universitat de València, ambas da Espanha, e Universidade Federal de Santa Catarina (UFSC).

O artigo A Tale of Reactive Oxygen Species on the Ag3PO4(110) Surface pode ser lido em: https://pubs.acs.org/doi/10.1021/acs.jpcc.3c06321.

* Com informações do CDMF.
 

  Republicar
 

Republicar

A Agência FAPESP licencia notícias via Creative Commons (CC-BY-NC-ND) para que possam ser republicadas gratuitamente e de forma simples por outros veículos digitais ou impressos. A Agência FAPESP deve ser creditada como a fonte do conteúdo que está sendo republicado e o nome do repórter (quando houver) deve ser atribuído. O uso do botão HMTL abaixo permite o atendimento a essas normas, detalhadas na Política de Republicação Digital FAPESP.