EnterUp develops recommender engine that personalizes online search by suggesting items aligned with customers’ interests (photo: Wikimedia Commons)
EnterUp develops recommender engine that personalizes online search by suggesting items aligned with customers' interests.
EnterUp develops recommender engine that personalizes online search by suggesting items aligned with customers' interests.
EnterUp develops recommender engine that personalizes online search by suggesting items aligned with customers’ interests (photo: Wikimedia Commons)
FAPESP Research for Innovation – Between 2014 and 2017, internet searches relating to property purchases, sales and rentals increased more than 44% per year. Today at least 71% of consumers begin the search for a property by visiting the websites or apps of real estate agents. These numbers were presented by Adriano Nasser, an executive with Google Brazil, during the “Conecta Imobi 2017” real estate marketing and technology event held in São Paulo on August 2-3.
However, websites offering this kind of search tool cannot yet meet consumers’ expectations with satisfactory speed, and users are often confused by the myriad of options when looking for a property. EnterUp Tecnologia, a startup based in São José do Rio Preto, São Paulo State, already provided services to real estate agents when it identified this gap between consumer demand and market supply, so it proposed a real estate recommendation solution using computational intelligence.
The system was developed with support from FAPESP’s Innovative Research in Small Business Program (PIPE). According to the principal investigator for the project, Paulo Scarpelini Neto, who holds a master’s in computer science from São Paulo State University (UNESP), the recommendation engine personalizes online searches by suggesting items aligned with the user’s interests.
This approach is widely used, for example, by multimedia streaming services and online bookstores, which suggest movies, songs and books similar to those already bought by the user. However, so far, it is a novelty in the real estate market.
EnterUp used framework technology to develop the solution. In computer programming, a framework is an application or set of applications (programs) that support the development of software products and tools. The startup opted for a hybrid framework “because it combines different techniques,” according to Scarpelini.
He goes on to explain that besides two techniques used by many existing recommender services – demographic filtering, based on gender, age and home location; and collaborative filtering, based on the preferences of people with similar taste profiles – the firm used a third technique it calls spatial collaborative filtering. “People interested in nearby properties tend to have the same preferences, so we locate similar taste profiles in the same areas of interest,” he says.
The advantage of spatial collaborative filtering, Scarpelini adds, is that it extends the range of offerings. A customer who is looking for specific characteristics in a particular neighborhood, such as a house near a shopping mall, for example, can be told there is another area with the same characteristics according to the search results obtained by users with the same profile.
The user’s interaction with the search engine supplies additional data in a non-explicit manner. The system records the properties visited online, the time spent looking at each one, and whether the user viewed photographs or other kinds of information. The result is Big Data, massive amounts of data that can be managed only via a computational framework including storage and processing tools.
Systems based on computational intelligence are capable of revealing useful knowledge that enhances business efficiency. “An example often cited in the literature refers to a major US retail chain,” Scarpelini says. “Analysis of the data showed that many people who purchased disposable diapers on Friday evening also bought beer. So they put the diapers and beer side by side in the supermarkets and boosted sales of both products.”
Change of plans
Working with Big Data was a technological challenge for which EnterUp’s partners – Scarpelini, Carlos Henrique El Hetti Laurenti and Rodrigo Cleir Castellon Rodrigues, all specialists in computer science – were already well prepared. During Phase 1 of their PIPE project, between February and October 2016, they developed a prototype and concluded from tests that the recommender system was in fact capable of enhancing and stimulating sales. Personalized recommendation produces a 25% increase in the rate at which prospects are converted into actual property sales or leases, according to these three researchers.
Structuring the business model was an even more daunting challenge. For this task, the researchers were aided by participation in the PIPE High-Tech Entrepreneurial Training offered in collaboration with George Washington University (GWU) in the United States in March-April 2016. After this seven-week course, as well as more than 100 interviews with proprietors of real estate and tech companies, the young entrepreneurs reviewed their plans and reached a conclusion that not only changed their business plan but sowed the seeds of a new firm (read more about the training program at agencia.fapesp.br/23097).
“We had a reality shock. The business model was a long way away from what the market expected,” Scarpelini says. The software was well received, but firms were not willing to pay for it. The real estate industry is conservative, technology-averse, and not prepared to take technology on board as a product.
The solution was to create a new brand name, Sua Casa Online (“Your Online Home”). “We completely revamped the business model,” he recalls. “We decided to build a real estate agency supported by technology.”
The real estate startup will have a substantial fixed staff of tech experts, following the example set by large-scale portals in other countries, in some of which computer science specialists account for 50% of the payroll. “It was one of the hardest decisions we had to make. It was also the biggest lesson we learned throughout the process,” Scarpelini says. “As researchers, we have many desires, but we realized our role as entrepreneurs was to solve a problem for the market.”
Scarpelini is excited by what lies ahead. In Phase 2 of the PIPE project, he plans to install the system on a website and reach out to end-users. Despite the economic recession Brazil is still experiencing, he adds, the market for low-income and social housing in the interior of São Paulo State, where he is based, is booming, especially among younger people: 60%-70% of first-time home buyers are aged between 20 and 30, and these people are digital natives, so his product could not be more timely.
EnterUp Tecnologia
www.enterup.com.br
Address: Avenida João Batista Vetorasso, 805, Distrito Industrial Waldemar (Box 11 A), CEP 15035-470, São José do Rio Preto, São Paulo, Brazil
Contact: contato@enterup.com.br
Tels: +55 17 3212 7255 / +55 17 3212 7556
The Agency FAPESP licenses news via Creative Commons (CC-BY-NC-ND) so that they can be republished free of charge and in a simple way by other digital or printed vehicles. Agência FAPESP must be credited as the source of the content being republished and the name of the reporter (if any) must be attributed. Using the HMTL button below allows compliance with these rules, detailed in Digital Republishing Policy FAPESP.